78 research outputs found

    More than colour attraction: behavioural functions of flower patterns

    Get PDF
    ReviewFlower patterns are thought to influence foraging decisions of insect pollinators. However, the resolution of insect compound eyes is poor. Insects perceive flower patterns only from short distances when they initiate landing or search for reward on the flower. From further away flower displays jointly form largersized patterns within the visual scene that will guide an insect’s flight behaviour. Chromatic and achromatic cues in such patterns may help insects to find, approach and learn rewarded locations in a flower patch, bringing them close enough to individual flowers. Flight trajectories and the spatial resolution of chromatic and achromatic vision in insects determine the effectiveness of floral displays, and both need to be considered in studies of plant-pollinator communication.BBSR

    Differences in colour learning between pollen- and sucrose-rewarded bees

    Get PDF
    Rapid Communication"This is an Accepted Manuscript of an article published by Taylor & Francis in Communicative & Integrative Biology on 08 August 2015, available online: http://wwww.tandfonline.com/10.1080/19420889.2015.1052921]."Open access articleWhat bees learn during pollen collection, and how they might discriminate between flowers on the basis of the quality of this reward, is not well understood. Recently we showed that bees learn to associate colours with differences in pollen rewards. Extending these findings, we present here additional evidence to suggest that the strength and time-course of memory formation may differ between pollen- and sucrose-rewarded bees. Colour-naïve honeybees, trained with pollen or sucrose rewards to discriminate coloured stimuli, were found to differ in their responses when recalling learnt information after reversal training. Such differences could affect the decision-making and foraging dynamics of individual bees when collecting different types of floral rewards

    A comparative analysis of colour preferences in temperate and tropical social bees

    Get PDF
    This is the final version of the article. Available from Springer Verlag via the DOI in this record.The spontaneous occurrence of colour preferences without learning has been demonstrated in several insect species; however, the underlying mechanisms are still not understood. Here, we use a comparative approach to investigate spontaneous and learned colour preferences in foraging bees of two tropical and one temperate species. We hypothesised that tropical bees utilise different sets of plants and therefore might differ in their spontaneous colour preferences. We tested colour-naive bees and foragers from colonies that had been enclosed in large flight cages for a long time. Bees were shortly trained with triplets of neutral, UV-grey stimuli placed randomly at eight locations on a black training disk to induce foraging motivation. During unrewarded tests, the bees’ responses to eight colours were video-recorded. Bees explored all colours and displayed an overall preference for colours dominated by long or short wavelengths, rather than a single colour stimulus. Naive Apis cerana and Bombus terrestris showed similar choices. Both inspected long-wavelength stimuli more than short-wavelength stimuli, whilst responses of the tropical stingless bee Tetragonula iridipennis differed, suggesting that resource partitioning could be a determinant of spontaneous colour preferences. Reward on an unsaturated yellow colour shifted the bees’ preference curves as predicted, which is in line with previous findings that brief colour experience overrides the expression of spontaneous preferences. We conclude that rather than determining foraging behaviour in inflexible ways, spontaneous colour preferences vary depending on experimental settings and reflect potential biases in mechanisms of learning and decision-making in pollinating insects.We acknowledge research grant funding provided by the Royal Society for International Joint Projects and UKIERI (DST-2014-15-041). B.G.S. was funded by a PhD studentship award from MHRD, Govt. of India

    How to stay perfect: the role of memory and behavioural traits in an experienced problem and a similar problem

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record.When animals encounter a task they have solved previously, or the same problem appears in a different apparatus, how does memory, alongside behavioural traits such as persistence, selectivity and flexibility, enhance problem-solving efficiency? We examined this question by first presenting grey squirrels with a puzzle 22 months after their last experience of it (the recall task). Squirrels were then given the same problem presented in a physically different apparatus (the generalisation task) to test whether they would apply the previously learnt tactics to solve the same problem but in a different apparatus. The mean latency to success in the first trial of the recall task was significantly different from the first exposure but not different from the last exposure of the original task, showing retention of the task. A neophobia test in the generalisation task suggested squirrels perceived the different apparatus as a different problem, but they quickly came to apply the same effective tactics as before to solve the task. Greater selectivity (the proportion of effective behaviours) and flexibility (the rate of switching between tactics) both enhanced efficiency in the recall task, but only selectivity enhanced efficiency in the generalisation task. These results support the interaction between memory and behavioural traits in problem-solving, in particular memory of task-specific tactics that could enhance efficiency. Squirrels remembered and emitted task-effective tactics more than ineffective tactics. As a result, they consistently changed from ineffective to effective behaviours after failed attempts at problem-solving

    Reporting of thermography parameters in biology: a systematic review of thermal imaging literature

    Get PDF
    This is the final version. Available from the Royal Society via the DOI in this record. Data accessibility: All data are available in the electronic supplementary material.Infrared (IR) thermography, where temperature measurements are made with IR cameras, has proven to be a very useful and widely used tool in biological science. Several thermography parameters are critical to the proper operation of thermal cameras and the accuracy of measurements, and these must usually be provided to the camera. Failure to account for these parameters may lead to less accurate measurements. Furthermore, the failure to provide information of parameter choices in reports may compromise appraisal of accuracy and replicate studies. In this review, we investigate how well biologists report thermography parameters. This is done through a systematic review of biological thermography literature that included articles published between years 2007 and 2017. We found that in primary biological thermography papers, which make some kind of quantitative temperature measurement, 48% fail to report values used for emissivity (an object's capacity to emit thermal radiation relative to a black body radiator), which is the minimum level of reporting that should take place. This finding highlights the need for life scientists to take into account and report key parameter information when carrying out thermography, in the future.Natural Environment Research Counci

    An ‘instinct for learning’: the learning flights and walks of bees, wasps and ants from the 1850s to now

    Get PDF
    This is the final version. Available on open access from the Company of Biologists via the DOI in this recordThe learning flights and walks of bees, wasps and ants are precisely coordinated movements that enable insects to memorise the visual surroundings of their nest or other significant places such as foraging sites. These movements occur on the first few occasions that an insect leaves its nest. They are of special interest because their discovery in the middle of the 19th century provided perhaps the first evidence that insects can learn and are not solely governed by instinct. Here, we recount the history of research on learning flights from their discovery to the present day. The first studies were conducted by skilled naturalists and then, over the following 50 years, by neuroethologists examining the insects’ learning behaviour in the context of experiments on insect navigation and its underlying neural mechanisms. The most important property of these movements is that insects repeatedly fixate their nest and look in other favoured directions, either in a preferred compass direction, such as North, or towards preferred objects close to the nest. Nest facing is accomplished through path integration. Memories of views along a favoured direction can later guide an insect's return to its nest. In some ant species, the favoured direction is adjusted to future foraging needs. These memories can then guide both the outward and homeward legs of a foraging trip. Current studies of central areas of the insect brain indicate what regions implement the behavioural manoeuvres underlying learning flights and the resulting visual memories.University of Susse

    Inhibitory control and memory in the search process for a modified problem in grey squirrels, Sciurus carolinensis

    Get PDF
    This is the final version. Available on open access from Springer via the DOI in this recordInhibiting learned behaviours when they become unproductive and searching for an alternative solution to solve a familiar but different problem are two indicators of flexibility in problem solving. A wide range of animals show these tendencies spontaneously, but what kind of search process is at play behind their problem-solving success? Here, we investigated how Eastern grey squirrels, Sciurus carolinensis, solved a modified mechanical problem that required them to abandon their preferred and learned solution and search for alternative solutions to retrieve out-of-reach food rewards. Squirrels could solve the problem by engaging in either an exhaustive search (i.e., using trial-and-error to access the reward) or a ‘backup’ solution search (i.e., recalling a previously successful but non-preferred solution). We found that all squirrels successfully solved the modified problem on their first trial and showed solving durations comparable to their last experience of using their preferred solution. Their success and high efficiency could be explained by their high level of inhibitory control as the squirrels did not persistently emit the learned and preferred, but now ineffective, pushing behaviour. Although the squirrels had minimal experience in using the alternative (non-preferred) successful solution, they used it directly or after one or two failed attempts to achieve success. Thus, the squirrels were using the ‘backup’ solution search process. Such a process is likely a form of generalisation which involves retrieving related information of an experienced problem and applying previous successful experience during problem solving. Overall, our results provide information regarding the search process underlying the flexibility observable in problem-solving success

    High diversity of arthropod colour vision: from genes to ecology

    Get PDF
    This is the final version. Available on open access from the Royal Society via the DOI in this recordData accessibility: This article has no additional data.Colour vision allows animals to use the information contained in the spectrum of light to control important behavioural decisions such as selection of habitats, food or mates. Among arthropods, the largest animal phylum, we find completely colour-blind species as well as species with up to 40 different opsin genes or more than 10 spectral types of photoreceptors, we find a large diversity of optical methods shaping spectral sensitivity, we find eyes with different colour vision systems looking into the dorsal and ventral hemisphere, and species in which males and females see the world in different colours. The behavioural use of colour vision shows an equally astonishing diversity. Only the neural mechanisms underlying this sensory ability seems surprisingly conserved-not only within the phylum, but even between arthropods and the other well-studied phylum, chordates. The papers in this special issue allow a glimpse into the colourful world of arthropod colour vision, and besides giving an overview this introduction highlights how much more research is needed to fill in the many missing pieces of this large puzzle. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'

    Remote sensing of floral resources for pollinators - new horizons from satellites to drones

    Get PDF
    This is the final version. Available on open access from Frontiers Media via the DOI in this record. Insect pollinators are affected by the spatio-temporal distribution of floral resources, which are dynamic across time and space, and also influenced heavily by anthropogenic activities. There is a need for spatial data describing the time-varying spatial distribution of flowers, which can be used within behavioral and ecological studies. However, this information is challenging to obtain. Traditional field techniques for mapping flowers are often laborious and limited to relatively small areas, making it difficult to assess how floral resources are perceived by pollinators to guide their behaviors. Conversely, remote sensing of plant traits is a relatively mature technique now, and such technologies have delivered valuable data for identifying and measuring non-floral dynamics in plant systems, particularly leaves, stems and woody biomass in a wide range of ecosystems from local to global scales. However, monitoring the spatial and temporal dynamics of plant floral resources has been notably scarce in remote sensing studies. Recently, lightweight drone technology has been adopted by the ecological community, offering a capability for flexible deployment in the field, and delivery of centimetric resolution data, providing a clear opportunity for capturing fine-grained information on floral resources at key times of the flowering season. In this review, we answer three key questions of relevance to pollination science – can remote sensing deliver information on (a) how isolated are floral resources? (b) What resources are available within a flower patch? And (c) how do floral patches change over time? We explain how such information has potential to deepen ecological understanding of the distribution of floral resources that feed pollinators and the parameters that determine their navigational and foraging choices based on the sensory information they extract at different spatial scales. We provide examples of how such data can be used to generate new insights into pollinator behaviors in distinct landscape types and their resilience to environmental change.South Devon Area of Outstanding Natural Beauty (AONB) UnitBiotechnology and Biological Sciences Research Council (BBSRC

    Floral temperature patterns can function as floral guides

    Get PDF
    This is the final version. Available from Springer via the DOI in this record. Floral guides are signal patterns that lead pollinators to floral rewards after they have located the flower, and increase foraging efficiency and pollen transfer. Patterns of several floral signalling modalities, particularly colour patterns, have been identified as being able to function as floral guides. Floral temperature frequently shows patterns that can be used by bumblebees for locating and recognising the flower, but whether these temperature patterns can function as a floral guide has not been explored. Furthermore, how combined patterns (using multiple signalling modalities) affect floral guide function has only been investigated in a few modality combinations. We assessed how artificial flowers induce behaviours in bumblebees when rewards are indicated by unimodal temperature patterns, unimodal colour patterns or multimodal combinations of these. Bees visiting flowers with unimodal temperature patterns showed an increased probability of finding rewards and increased learning of reward location, compared to bees visiting flowers without patterns. However, flowers with contrasting unimodal colour patterns showed further guide-related behavioural changes in addition to these, such as reduced reward search times and attraction to the rewarding feeder without learning. This shows that temperature patterns alone can function as a floral guide, but with reduced efficiency. When temperature patterns were added to colour patterns, bees showed similar improvements in learning reward location and reducing their number of failed visits in addition to the responses seen to colour patterns. This demonstrates that temperature pattern guides can have beneficial effects on flower handling both when alone or alongside colour patterns.Natural Environment Research CouncilBiotechnology & Biological Sciences Research Counci
    • …
    corecore